Wireless Power Transfer System For A Human Motion Energy Harvester

نویسندگان

  • Pit Pillatsch
  • Eric M. Yeatman
  • Andrew S. Holmes
  • Paul K. Wright
چکیده

Human motion energy harvesting as an alternative to battery powering in body worn and implanted devices is challenging during prolonged periods of inactivity. Even a buffer energy storage system will run out of power eventually if there is no external acceleration to the harvester. This paper presents a method to actuate the rotor inside a previously presented rotational piezoelectric energy harvester wirelessly via a magnetic reluctance coupling to an external driving rotor with one or more permanent magnet stacks attached. This makes it possible to recharge a battery or super-capacitor even if a patient is not moving. The use of a permanent magnet coupling has potential advantages compared to traditional inductive or ultrasonic methods, e.g. in terms of tissue damage and transmission depth. Simulation results show the achievable coupling torque for different configurations of magnet geometries and relative positions between the driving magnet stack(s) and the harvester. It is shown that using a single magnet stack yields better results than using two diametrically opposite stacks. Measurements are performed with different magnets, driving frequencies and orientations of the harvester. The results are discussed and successful energy transfer was achieved regardless Preprint submitted to Sensors And Actuators A Physical March 26, 2016 *Manuscript(includes changes marked in red font for revision documents) Click here to view linked References

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HYREP: A Hybrid Low-Power Protocol for Wireless Sensor Networks

In this paper, a new hybrid routing protocol is presented for low power Wireless Sensor Networks (WSNs). The new system uses an integrated piezoelectric energy harvester to increase the network lifetime. Power dissipation is one of the most important factors affecting lifetime of a WSN. An innovative cluster head selection technique using Cuckoo optimization algorithm has been used in the desig...

متن کامل

Autonomous Wireless Heat Energy Meter based on Piezoelectric Energy Harvester for Heat Energy Measurement in Building Complexes

This paper presents a platform for power autonomous wireless energy meter device using piezoelectric energy harvesters. This device can be mainly used for measuring the share of heat energy consumption in a fair manner in building complex with central heat energy system. In the suggested device, the piezoelectric energy harvester is also used as a flow-meter to reduce the power consumption of t...

متن کامل

High Efficient Wireless Charger for Electric Vehicle with Reduced Sensitivity to Misalignment using Multilevel Inverter

Wireless power transfer (WPT) has been found to be a practical replacement for cable power transfer which provides a wide range of applications. This technology offers a remarkable solution for charging electric vehicles (EVs) due to more convenience and increased safety.  Moreover dynamic (in-motion) wireless charging offers the possibility of reducing the energy storage requirement on the veh...

متن کامل

An Investigation into Resonant Frequency of Triangular V-Shaped Cantilever Piezoelectric Vibration Energy Harvester

Power supply is a bottle-neck problem of wireless micro-sensors, especially where the replacement of batteries is impossible or inconvenient. Now piezoelectric material is being used to harvest vibration energy for self-powered sensors. However, the geometry of a piezoelectric cantilever beam will greatly affect its vibration energy harvesting ability. This paper deduces a remarkably precise an...

متن کامل

A Shoe-Embedded Piezoelectric Energy Harvester for Wearable Sensors

Harvesting mechanical energy from human motion is an attractive approach for obtaining clean and sustainable electric energy to power wearable sensors, which are widely used for health monitoring, activity recognition, gait analysis and so on. This paper studies a piezoelectric energy harvester for the parasitic mechanical energy in shoes originated from human motion. The harvester is based on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016